

1.

Direction of vibration Direction of wave propagation

- A. This is a *transverse / longitudinal* wave. (delete one)
- B. Label a **crest** and a **trough**.
- C. Mark the wavelength and amplitude on the diagram.

2.


- A. This is a *transverse / longitudinal* wave. (delete one)
- B. Label a compression and a rarefaction.
- C. Mark the wavelength on the diagram.

- **3.** Sound waves are *transverse / longitudinal*. (delete one).
- **4.** The **A**..... of a sound wave tells us about how **L**.... the sound is.
- **5.** The **F**..... of a sound wave tells us about its **P**..... (how high or low it is).

In sound waves, the amplitude is a measure of how densely the particles bunch together in a compression, or how thinly they spread apart in a rarefaction, compared to the equilibrium position. Louder sounds have a greater difference.

The particles in a sound wave can be represented by the coils of a slinky.

6. Which of the slinky waves below (A or B) represents the louder sound?

